Формулы по физике закон сохранения энергии. Школьная энциклопедия

💖 Нравится? Поделись с друзьями ссылкой

Полная механическая энергия замкнутой системы тел остается неизменной


Закон сохранения энергии можно представить в виде

Если между телами действуют силы трения, то закон сохранения энергии видоизменяется. Изменение полной механической энергии равно работе сил трения

Рассмотрим свободное падение тела с некоторой высоты h1 . Тело еще не движется (допустим, мы его держим), скорость равна нулю, кинетическая энергия равна нулю. Потенциальная энергия максимальная, так как сейчас тело находится выше всего от земли, чем в состоянии 2 или 3.


В состоянии 2 тело обладает кинетической энергией (так как уже развило скорость), но при этом потенциальная энергия уменьшилась, так как h2 меньше h1. Часть потенциальной энергии перешло в кинетическую.

Состояние 3 - это состояние перед самой остановкой. Тело как бы только-только дотронулось до земли, при этом скорость максимальная. Тело обладает максимальной кинетической энергией. Потенциальная энергия равна нулю (тело находится на земле).

Полные механические энергии равны между собой , если пренебрегать силой сопротивления воздуха. Например, максимальная потенциальная энергия в состоянии 1 равна максимальной кинетической энергии в состоянии 3.

А куда потом исчезает кинетическая энергия? Исчезает бесследно? Опыт показывает, что механическое движение никогда не исчезает бесследно и никогда оно не возникает само собой. Во время торможения тела произошло нагревание поверхностей. В результате действия сил трения кинетическая энергия не исчезла, а превратилась во внутреннюю энергию теплового движения молекул.

При любых физических взаимодействиях энергия не возникает и не исчезает, а только превращается из одной формы в другую.

Главное запомнить

1) Суть закона сохранения энергии

Общая форма закона сохранения и превращения энергии имеет вид

Изучая тепловые процессы, мы будем рассматривать формулу
При исследовании тепловых процессов не рассматривается изменение механической энергии, то есть

Продемонстрировать абсолютно неупругий удар можно также с помощью шаров из пластилина (глины), движущихся навстречу друг другу. Если массы шаров m 1 и m 2 , их скорости до удара , то, используя закон сохранения импульса, можно записать:

Если шары двигались навстречу друг другу, то они вместе будут продолжать двигаться в ту сторону, в которую двигался шар, обладающий большим импульсом. В частном случае – если массы и скорости шаров равны, то

Выясним, как меняется кинетическая энергия шаров при центральном абсолютно неупругом ударе. Так как в процессе соударения шаров между ними действуют силы, зависящие не от самих деформаций, а от их скоростей, то мы имеем дело с силами, подобными силам трения, поэтому закон сохранения механической энергии не должен соблюдаться. Вследствие деформации происходит «потеря» кинетической энергии, перешедшей в тепловую или другие формы энергии (диссипация энергии ). Эту «потерю» можно определить по разности кинетических энергий до и после удара:

.

Отсюда получаем:

(5.6.3)

Если ударяемое тело было первоначально неподвижно (υ 2 = 0), то

Когда m 2 >> m 1 (масса неподвижного тела очень большая), то и почти вся кинетическая энергия при ударе переходит в другие формы энергии. Поэтому, например, для получения значительной деформации наковальня должна быть массивнее молотка.

Когда тогда и практически вся энергия затрачивается на возможно большее перемещение, а не на остаточную деформацию (например, молоток – гвоздь).

Абсолютно неупругий удар – пример того, как происходит «потеря» механической энергии под действием диссипативных сил.

Принцип сохранения энергии - абсолютно точен, не зафиксировано случаев его нарушения. Это фундаментальный закон природы, из которого вытекают другие. Поэтому важно правильно понимать его и уметь применять на практике.

Фундаментальный принцип

Общего определения для понятия энергии не существует. Выделяют разные ее виды: кинетическую, тепловую, потенциальную, химическую. Но сути это не проясняет. Энергия - некая количественная характеристика, которая, чтобы бы не происходило, остается постоянной для всей системы. Можно наблюдать, как скользящая шайба останавливается, и заявить: энергия изменилась! На самом деле нет: механическая энергия перешла в тепловую, часть которой рассеялась в воздухе, а часть ушла на плавление снега.

Рис. 1. Переход работы, затрачиваемой на преодоление трения, в тепловую энергию.

Математик, Эмми Нетер, сумела доказать, что постоянство энергии - проявление однородности времени. Эта величина инвариантна относительно переноса вдоль временной координаты, поскольку законы природы с течением времени не меняются.

Будем рассматривать полную механическую энергию (E) и ее виды - кинетическую (T) и потенциальную (V). Если сложить их, то получим выражение для полной механической энергии:

$E = T + V_{(q)}$

Записывая потенциальную энергию, как $V_{(q)}$, указываем, что она зависит исключительно от конфигурации системы. Под q понимаются обобщенные координаты. Это могут быть x, y, z в прямоугольной декартовой системе координат, а могут быть любые другие. Чаще всего имеют дело с декартовой системой.

Рис. 2. Потенциальная энергия в поле тяжести.

Математическая формулировка закона сохранения энергии в механике выглядит так:

$\frac {d}{dt}(T+V_{(q)}) = 0$ – производная полной механической энергии по времени равна нулю.

В привычном, интегральном виде, формула закона сохранения энергии записывается так:

В механике на закон накладываются ограничения: силы, действующие на систему, должны быть консервативным (их работа зависит только от конфигурации системы). При наличии неконсервативных сил, например, трения, механическая энергия переходит в другие виды энергии (тепловую, электрическую).

Термодинамика

Попытки создать вечный двигатель особенно характерны для 18-19 веков - эпохи, когда были сделаны первые паровые машины. Неудачи, тем не менее, привели к положительному результату: было сформулировано первое начало термодинамики:

$Q = \Delta U + A$ – затрачиваемое тепло расходует на совершение работы и на изменение внутренней энергии. Это ни что иное, как закон сохранения энергии, но для тепловых двигателей.

Рис. 3. Схема паровой машины.

Задачи

Груз массой 1 кг, подвешенный на нити L=2 м, отклонили так, что высота поднятия оказалась равной 0,45 м, и отпустили без начальной скорости. Какова будет сила натяжения нити в нижней точке?

Решение:

Запишем второй закон Ньютона в проекции на ось y в момент, когда тело проходит нижнюю точку:

$ma = T – mg$, но, так как $a = \frac {v^2}{L}$, его можно переписать в новом виде:

$m \cdot \frac {v^2}{L} = T – mg$

Теперь запишем закон сохранения энергии, учитывая, что в начальном положении кинетическая энергия равна нулю, а в нижней точке - потенциальная энергия равна нулю:

$m \cdot g \cdot h = \frac {m \cdot v^2}{2}$

Тогда сила натяжения нити равна:

$T = \frac {m \cdot 2 \cdot g \cdot h}{L} + mg = 10 \cdot (0,45 + 1) = 14,5 \: Н$

Что мы узнали?

В ходе урока рассмотрели фундаментальное свойство природы (однородность времени), из которого вытекает закон сохранения энергии, рассмотрели примеры этого закона в разных разделах физики. Для закрепления материала решили задачу с маятником.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 252.

Закон сохранения энергии утверждает, что энергия тела никогда не исчезает и не появляется вновь, она может лишь превращаться из одного вида в другой. Этот закон универсален. В различных разделах физики он имеет свою формулировку. Классическая механика рассматривает закон сохранения механической энергии.

Полная механическая энергия замкнутой системы физических тел, между которыми действуют консервативные силы, является величиной постоянной. Так формулируется закон сохранения энергии в механике Ньютона.

Замкнутой, или изолированной, принято считать физическую систему, на которую не действуют внешние силы. В ней не происходит обмена энергией с окружающим пространством, и собственная энергия, которой она обладает, остаётся неизменной, то есть сохраняется. В такой системе действуют только внутренние силы, и тела взаимодействуют друг с другом. В ней могут происходить лишь превращения потенциальной энергии в кинетическую и наоборот.

Простейший пример замкнутой системы – снайперская винтовка и пуля.

Виды механических сил


Силы, которые действуют внутри механической системы, принято разделять на консервативные и неконсервативные.

Консервативными считаются силы, работа которых не зависит от траектории движения тела, к которому они приложены, а определяется только начальным и конечным положением этого тела. Консервативные силы называют также потенциальными . Работа таких сил по замкнутому контуру равна нулю. Примеры консервативных сил – сила тяжести, сила упругости .

Все остальные силы называются неконсервативными . К ним относятся сила трения и сила сопротивления . Их называют также диссипативными силами. Эти силы при любых движениях в замкнутой механической системе совершают отрицательную работу, и при их действии полная механическая энергия системы убывает (диссипирует). Она переходит в другие, не механические виды энергии, например, в теплоту. Поэтому закон сохранения энергии в замкнутой механической системе может выполняться, только если неконсервативные силы в ней отсутствуют.

Полная энергия механической системы состоит из кинетической и потенциальной энергии и является их суммой. Эти виды энергий могут превращаться друг в друга.

Потенциальная энергия

Потенциальную энергию называют энергией взаимодействия физических тел или их частей между собой. Она определяется их взаимным расположением, то есть, расстоянием между ними, и равна работе, которую нужно совершить, чтобы переместить тело из точки отсчёта в другую точку в поле действия консервативных сил.

Потенциальную энергию имеет любое неподвижное физическое тело, поднятое на какую-то высоту, так как на него действует сила тяжести, являющаяся консервативной силой. Такой энергией обладает вода на краю водопада, санки на вершине горы.

Откуда же эта энергия появилась? Пока физическое тело поднимали на высоту, совершили работу и затратили энергию. Вот эта энергия и запаслась в поднятом теле. И теперь эта энергия готова для совершения работы.

Величина потенциальной энергии тела определяется высотой, на которой находится тело относительно какого-то начального уровня. За точку отсчёту мы можем принять любую выбранную нами точку.

Если рассматривать положение тела относительно Земли, то потенциальная энергия тела на поверхности Земли равна нулю. А на высоте h она вычисляется по формуле:

Е п = m ɡ h ,

где m – масса тела

ɡ - ускорение свободного падения

h – высота центра масс тела относительно Земли

ɡ = 9,8 м/с 2

При падении тела c высоты h 1 до высоты h 2 сила тяжести совершает работу. Эта работа равна изменению потенциальной энергии и имеет отрицательное значение, так как величина потенциальной энергии при падении тела уменьшается.

A = - ( E п2 – E п1) = - ∆ E п ,

где E п1 – потенциальная энергия тела на высоте h 1 ,

E п2 - потенциальная энергия тела на высоте h 2 .

Если же тело поднимают на какую-то высоту, то совершают работу против сил тяжести. В этом случае она имеет положительное значение. А величина потенциальной энергии тела увеличивается.

Потенциальной энергией обладает и упруго деформированное тело (сжатая или растянутая пружина). Её величина зависит от жёсткости пружины и от того, на какую длину её сжали или растянули, и определяется по формуле:

Е п = k·(∆x) 2 /2 ,

где k – коэффициент жёсткости,

∆x – удлинение или сжатие тела.

Потенциальная энергии пружины может совершать работу.

Кинетическая энергия

В переводе с греческого «кинема» означает «движение». Энергия, которой физическое тело получает вследствие своего движения, называется кинетической. Её величина зависит от скорости движения.

Катящийся по полю футбольный мяч, скатившиеся с горы и продолжающие двигаться санки, выпущенная из лука стрела – все они обладают кинетической энергией.

Если тело находится в состоянии покоя, его кинетическая энергия равна нулю. Как только на тело подействует сила или несколько сил, оно начнёт двигаться. А раз тело движется, то действующая на него сила совершает работу. Работа силы, под воздействием которой тело из состояния покоя перейдёт в движение и изменит свою скорость от нуля до ν , называется кинетической энергией тела массой m .

Если же в начальный момент времени тело уже находилось в движении, и его скорость имела значение ν 1 , а в конечный момент она равнялась ν 2 , то работа, совершённая силой или силами, действующими на тело, будет равна приращению кинетической энергии тела.

E k = E k 2 - E k 1

Если направление силы совпадает с направлением движения, то совершается положительная работа, и кинетическая энергия тела возрастает. А если сила направлена в сторону, противоположную направлению движения, то совершается отрицательная работа, и тело отдаёт кинетическую энергию.

Закон сохранения механической энергии

Е k 1 + Е п1 = Е k 2 + Е п2

Любое физическое тело, находящееся на какой-то высоте, имеет потенциальную энергию. Но при падении оно эту энергию начинает терять. Куда же она девается? Оказывается, она никуда не исчезает, а превращается в кинетическую энергию этого же тела.

Предположим, на какой-то высоте неподвижно закреплён груз. Его потенциальная энергия в этой точке равна максимальному значению. Если мы отпустим его, он начнёт падать с определённой скоростью. Следовательно, начнёт приобретать кинетическую энергию. Но одновременно начнёт уменьшаться его потенциальная энергия. В точке падения кинетическая энергия тела достигнет максимума, а потенциальная уменьшится до нуля.

Потенциальная энергия мяча, брошенного с высоты, уменьшается, а кинетическая энергия возрастает. Санки, находящиеся в состоянии покоя на вершине горы, обладают потенциальной энергией. Их кинетическая энергия в этот момент равна нулю. Но когда они начнут катиться вниз, кинетическая энергия будет увеличиваться, а потенциальная уменьшаться на такую же величину. А сумма их значений останется неизменной. Потенциальная энергия яблока, висящего на дереве, при падении превращается в его кинетическую энергию.

Эти примеры наглядно подтверждают закон сохранения энергии, который говорит о том, что полная энергия механической системы является величиной постоянной . Величина полной энергии системы не меняется, а потенциальная энергия переходит в кинетическую и наоборот.

На какую величину уменьшится потенциальная энергия, на такую же увеличится кинетическая. Их сумма не изменится.

Для замкнутой системы физических тел справедливо равенство
E k1 + E п1 = E k2 + E п2 ,
где E k1 , E п1 - кинетическая и потенциальная энергии системы до какого-либо взаимодействия, E k2 , E п2 - соответствующие энергии после него.

Процесс преобразования кинетической энергии в потенциальную и наоборот можно увидеть, наблюдая за раскачивающимся маятником.

Нажать на картинку

Находясь в крайне правом положении, маятник словно замирает. В этот момент его высота над точкой отсчёта максимальна. Следовательно, максимальна и потенциальная энергия. А кинетическая равна нулю, так как он не движется. Но в следующее мгновение маятник начинает движение вниз. Возрастает его скорость, а, значит, увеличивается кинетическая энергия. Но уменьшается высота, уменьшается и потенциальная энергия. В нижней точке она станет равной нулю, а кинетическая энергия достигнет максимального значения. Маятник пролетит эту точку и начнёт подниматься вверх налево. Начнёт увеличиваться его потенциальная энергия, а кинетическая будет уменьшаться. И т.д.

Для демонстрации превращений энергии Исаак Ньютон придумал механическую систему, которую называют колыбелью Ньютона или шарами Ньютона .

Нажать на картинку

Если отклонить в сторону, а затем отпустить первый шар, то его энергия и импульс передадутся последнему через три промежуточных шара, которые останутся неподвижными. А последний шар отклонится с такой же скоростью и поднимется на такую же высоту, что и первый. Затем последний шар передаст свою энергию и импульс через промежуточные шары первому и т. д.

Шар, отведенный в сторону, обладает максимальной потенциальной энергией. Его кинетическая энергия в этот момент нулевая. Начав движение, он теряет потенциальную энергию и приобретает кинетическую, которая в момент столкновения со вторым шаром достигает максимума, а потенциальная становится равной нулю. Далее кинетическая энергия передаётся второму, затем третьему, четвёртому и пятому шарам. Последний, получив кинетическую энергию, начинает двигаться и поднимается на такую же высоту, на которой находился первый шар в начале движения. Его кинетическая энергия в этот момент равна нулю, а потенциальная равна максимальному значению. Далее он начинает падать и точно так же передаёт энергию шарам в обратной последовательности.

Так продолжается довольно долго и могло бы продолжаться до бесконечности, если бы не существовало неконсервативных сил. Но в реальности в системе действуют диссипативные силы, под действием которых шары теряют свою энергию. Постепенно уменьшается их скорость и амплитуда. И, в конце концов, они останавливаются. Это подтверждает, что закон сохранения энергии выполняется только в отсутствии неконсервативных сил.

1. Рассмотрим свободное падение тела с некоторой высоты h относительно поверхности Земли (рис. 77). В точке A тело неподвижно, поэтому оно обладает только потенциальной энергией.В точке B на высоте h 1 тело обладает и потенциальной энергией, и кинетической энергией, поскольку тело в этой точке имеет некоторую скорость v 1 . В момент касания поверхности Земли потенциальная энергия тела равна нулю, оно обладает только кинетической энергией.

Таким образом, во время падения тела его потенциальная энергия уменьшается, а кинетическая увеличивается.

Полной механической энергией E называют сумму потенциальной и кинетической энергий.

E = E п + E к.

2. Покажем, что полная механическая энергия системы тел сохраняется. Рассмотрим еще раз падение тела на поверхность Земли из точки A в точку C (см. рис. 78). Будем считать, что тело и Земля представляют собой замкнутую, систему тел, в которой действуют только консервативныесилы, в данном случае сила тяжести.

В точке A полная механическая энергия тела равна его потенциальной энергии

E = E п = mgh .

В точке B полная механическая энергия тела равна

E = E п1 + E к1 .
E п1 = mgh 1 , E к1 = .

Тогда

E = mgh 1 + .

Скорость тела v 1 можно найти по формуле кинематики. Поскольку перемещение тела из точки A в точку B равно

s = h h 1 = , то= 2g (h h 1).

Подставив это выражение в формулу полной механической энергии, получим

E = mgh 1 + mg (h h 1) = mgh .

Таким образом, в точке B

E = mgh .

В момент касания поверхности Земли (точка C ) тело обладает только кинетической энергией, следовательно, его полная механическая энергия

E = E к2 = .

Скорость тела в этой точке можно найти по формуле= 2gh , учитывая, что начальная скорость тела равна нулю. После подстановки выражения для скорости в формулу полной механической энергии получим E = mgh .

Таким образом, мы получили, что в трех рассмотренных точках траектории полная механическая энергия тела равна одному и тому же значению: E = mgh . К такому же результату мы придем, рассмотрев другие точки траектории тела.

Полная механическая энергия замкнутой системы тел, в которой действуют только консервативные силы, остается неизменной при любых взаимодействиях тел системы.

Это утверждение является законом сохранения механической энергии.

3. В реальных системах действуют силы трения. Так, при свободном падении тела в рассмотренном примере (см. рис. 78) действует сила сопротивления воздуха, поэтому потенциальная энергия в точке A больше полной механической энергии в точке B и в точке C на величину работы, совершаемой силой сопротивления воздуха: DE = A . При этом энергия не исчезает, часть механической энергии превращается во внутреннюю энергию тела и воздуха.

4. Как вы уже знаете из курса физики 7 класса, для облегчения труда человека используют различные машины и механизмы, которые, обладая энергией, совершают механическую работу. К таким механизмам относят, например, рычаги, блоки, подъемные краны и др. При совершении работы происходит преобразование энергии.

Таким образом, любая машина характеризуется величиной, показывающей, какая часть передаваемой ей энергии используется полезно или какая часть совершенной (полной) работы является полезной. Эта величина называется коэффициентом полезного действия (КПД).

Коэффициентом полезного действия h называют величину, равную отношению полезной работы A n к полной работе A .

Обычно КПД выражают в процентах.

h = 100%.

5. Пример решения задачи

Парашютист массой 70 кг отделился от неподвижно висящего вертолета и, пролетев 150 м до раскрытия парашюта, приобрел скорость 40 м/с. Чему равна работа силы сопротивления воздуха?

Дано :

Решение

m = 70 кг

v 0 = 0

v = 40 м/с

sh = 150 м

За нулевой уровень потенциальной энергии выберем уровень, на котором парашютист приобрел скорость v . Тогда при отделении от вертолета в начальном положении на высоте h полная механическая энергия парашютиста, равна его потенциальной энергии E=E п = mgh , поскольку его кинети-

A ?

ческая энергия на данной высоте равна нулю. Пролетев расстояние s = h , парашютист приобрел кинетическую энергию, а его потенциальная энергия на этом уровне стала равна нулю. Таким образом, во втором положении полная механическая энергия парашютиста равна его кинетической энергии:

E = E к = .

Потенциальная энергия парашютиста E п при отделении от вертолета не равна кинетической E к, поскольку сила сопротивления воздуха совершает работу. Следовательно,

A = E к – E п;

A =– mgh .

A =– 70 кг 10 м/с 2 150 м = –16 100 Дж.

Работа имеет знак «минус», поскольку она равна убыли полной механической энергии.

Ответ: A = –16 100 Дж.

Вопросы для самопроверки

1. Что называют полной механической энергией?

2. Сформулируйте закон сохранения механической энергии.

3. Выполняется ли закон сохранения механической энергии, если на тела системы действует сила трения? Ответ поясните.

4. Что показывает коэффициент полезного действия?

Задание 21

1. Мяч массой 0,5 кг брошен вертикально вверх со скоростью 10 м/с. Чему равна потенциальная энергия мяча в высшей точке подъема?

2. Спортсмен массой 60 кг прыгает с 10-метровой вышки в воду. Чему равны: потенциальная энергия спортсмена относительно поверхности воды перед прыжком; его кинетическая энергия при вхождении в воду; его потенциальная и кинетическая энергия на высоте 5 м относительно поверхности воды? Сопротивлением воздуха пренебречь.

3. Определите коэффициент полезного действия наклонной плоскости высотой 1 м и длиной 2 м при перемещении по ней груза массой 4 кг под действием силы 40 Н.

Основное в главе 1

1. Виды механического движения.

2. Основные кинематические величины (табл. 2).

Таблица 2

Название

Обозначение

Что характери- зует

Едини ца изме- рения

Способ измерения

Вектор или скаляр

Относительная или абсолютная

Координат а

x , y , z

положение тела

м

Линейка

Скаляр

Относительная

Путь

l

изменение положения тела

м

Линейка

Скаляр

Относительная

Перемеще ние

s

изменение положения тела

м

Линейка

Вектор

Относительная

Время

t

длительность процесса

с

Секундомер

Скаляр

Абсолютная

Скорость

v

быстроту изменения положения

м/с

Спидометр

Вектор

Относительная

Ускорение

a

быстроту изменения скорости

м/с2

Акселерометр

Вектор

Абсолютная

3. Основные уравнения движения (табл. 3).

Таблица 3

Прямолинейное

Равномерное по окружности

Равномерное

Равноускоренное

Ускорение

a = 0

a = const; a =

a = ; a = w2R

Скорость

v = ; vx =

v = v 0 + at ;

vx = v 0x + axt

v = ; w =

Перемещение

s = vt ; sx =vxt

s = v 0t + ; sx =vxt+

Координата

x = x 0 + vxt

x = x 0 + v 0xt +

4. Основные графики движения.

Таблица 4

Вид движения

Модуль и проекция ускорения

Модуль и проекция скорости

Модуль и проекция перемещения

Координата*

Путь*

Равномерное

Равноускоренно е

5. Основные динамические величины.

Таблица 5

Название

Обозна- чение

Едини ца изме- рения

Что характеризует

Способ измерения

Вектор или скаляр

Относитель ная или абсолютная

Масса

m

кг

Инертность

Взаимодействие, взвешивание на рычажных весах

Скаляр

Абсолютная

Сила

F

Н

Взаимодействие

Взвешивание на пружинных весах

Вектор

Абсолютная

Импульс тела

p = m v

кгм/с

Состояние тела

Косвенный

Вектор

Относительна я

Импульс силы

F t

Нс

Изменение состояния тела (изменение импульса тела)

Косвенный

Вектор

Абсолютная

6. Основные законы механики

Таблица 6

Название

Формула

Примечание

Границы и условия применимости

Первый закон Ньютона

Устанавливаетсуществование инерциальных систем отсчета

Справедливы: в инерциальных системах отсчета; для материальных точек; для тел, движущихся со скоростями, много меньшими скорости света

Второй закон Ньютона

a =

Позволяет определить силу, действующую на каждое из взаимодействующих тел

Третий закон Ньютона

F 1 = F 2

Относится к обоим взаимодействующим телам

Второй закон Ньютона (другая формулировка)

m v m v 0 = F t

Устанавливает изменение импульса тела при действии на него внешней силы

Закон сохранения импульса

m 1 v 1 + m 2 v 2 = = m 1 v 01 + m 2 v 02

Справедлив для замкнутых систем

Закон сохранения механической энергии

E = E к + E п

Справедлив для замкнутых систем, в которых действуют консервативные силы

Закон изменения механической энергии

A = D E = E к + E п

Справедлив для незамкнутых систем, в которых действуют неконсервативные силы

7. Силы в механике.

8. Основные энергетические величины.

Таблица 7

Название

Обознач ение

Едини цаbиз ме- рения

Что характеризует

Связь с другими величинами

Вектор или скаляр

Относительная или абсолютная

Работа

A

Дж

Измерение энергии

A =Fs

Скаляр

Абсолютная

Мощность

N

Вт

Быстроту совершения работы

N =

Скаляр

Абсолютная

Механическа я энергия

E

Дж

Способность совершить работу

E = E п + E к

Скаляр

Относительная

Потенциальн ая энергия

E п

Дж

Положение

E п = mgh

E п =

Скаляр

Относительная

Кинетическа я энергия

E к

Дж

Положение

E к =

Скаляр

Относительная

Коэффициен т полезного действия

Какая часть совершенной работы является полезной


Рассказать друзьям